ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328817630

A Study on Data Processing Services for the Operation of Geo-Analysis Models

in the Open Web Environment

Article - November 2018

DOI: 10.1029/2018EA000459

CITATION
1

6 authors, including:

&

Min Chen
Key Laboratory of Virtual Geographic Environment, Ministry of Education of PRC

78 PUBLICATIONS 689 CITATIONS

SEE PROFILE

Songshan Yue
Nanjing Normal University

21 PUBLICATIONS 115 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project

Copyright protection of GIS vector map View project

Project

All content following this page was uploaded by Min Chen on 25 November 2018.

The user has requested enhancement of the downloaded file.

READS

.

Guonian Li
Key Laboratory of Virtual Geographic Environment, Ministry of Education of PRC, ...

147 PUBLICATIONS 859 CITATIONS

SEE PROFILE

Yongning Wen
Nanjing Normal University

55 PUBLICATIONS 313 CITATIONS

SEE PROFILE

NSF for Excellent Young Scholars of China "Geographic modelling and Simulation" View project

https://www.researchgate.net/publication/328817630_A_Study_on_Data_Processing_Services_for_the_Operation_of_Geo-Analysis_Models_in_the_Open_Web_Environment?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/328817630_A_Study_on_Data_Processing_Services_for_the_Operation_of_Geo-Analysis_Models_in_the_Open_Web_Environment?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Copyright-protection-of-GIS-vector-map?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/NSF-for-Excellent-Young-Scholars-of-China-Geographic-modelling-and-Simulation?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Min_Chen39?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Min_Chen39?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Min_Chen39?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guonian_Lue?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guonian_Lue?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guonian_Lue?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Songshan_Yue?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Songshan_Yue?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_Normal_University?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Songshan_Yue?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongning_Wen?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongning_Wen?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_Normal_University?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongning_Wen?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Min_Chen39?enrichId=rgreq-292e951e53fc8a87ccb82a832b486cfc-XXX&enrichSource=Y292ZXJQYWdlOzMyODgxNzYzMDtBUzo2OTY4MjkyMjYyNjY2MjRAMTU0MzE0ODQ0MjQyOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

How to cite this article: Wang J, Chen M, Lii G, Yue S, Chen K, Wen Y. 2018. A Study on Data Processing
Services for the Operation of Geo-Analysis Models in the Open Web Environment. Earth and Space
Science, Doi: https://doi.org/10.1029/2018EA000459

A Study on Data Processing Services for the Operation of Geo-Analysis
Models in the Open Web Environment

Jin Wang"** Min Chen" %%+ Guonian Lu"%*, Songshan Yue®** Kun Chen'?®*,
Yongning Wen* 3 *

'Key Laboratory of the Virtual Geographic Environment, Ministry of Education, Nanjing
Normal University, Nanjing, Jiangsu, China.

2Key Laboratory of Watershed Ecology and Geographic Environment Monitoring, NASG,
Nanchang, Jiangxi, China.

%Jiangsu Center for Collaborative Innovation in Geographical Information Resource
Development and Application, Nanjing Normal University, Nanjing, Jiangsu, China.
“State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu
Province), Nanjing Normal University, Nanjing, Jiangsu, China.

Corresponding author: Min Chen (chenmin0902@163.com)

Key Points:
e Data preparation and preprocessing for model driving
e Data processing service for coupling models with related data resources
e Model integration with data processing services for comprehensive problem solving

mailto:email@address.edu)

Abstract
With the development of network technology, integrated modeling frameworks based on web
services are becoming a key topic with regard to solving complex geographic problems.
Currently, large numbers of geo-analysis models and massive data resources are available on
the open web. Accessing, acquiring or invoking individual resources transparently is
relatively straightforward; but combining these models and data resources for comprehensive
simulations remains challenging due to their heterogeneity and diversity. Data resources are
the driving force of model execution and can serve as an intermediate linkage medium for
model integration, yet in most cases, the data resources cannot be directly used to drive or
link models. Data processing services that can prepare and process data are urgently needed
in the web environment to enable the convenient coupling of models and data resources
through the web, thus reducing the difficulty of preparing data and avoiding repetitive data
processing work. Three types of data processing methods that can achieve mapping,
refactoring, and visualization are designed in this article based on the proposed Universal
Data eXchange (UDX) model. These methods can be published as data processing services to
facilitate the operation of geo-analysis models through the web environment. The
applicability of the proposed data processing services is examined through two cases: the
processing service is applied in model integration through the web in the first case, and data
preparation with processing services for the Taihu Water Pollution Diffusion Model
(TWPDM) is carried out in the second case. The results demonstrate that the proposed
processing services can bridge the gap between geo-analysis models and data resources
hosted on networks.
1 Introduction

Geographic modeling is an effective way to reveal the nature of geographic
phenomena (Demeritt and Wainwright, 2005). Geo-analysis models are the products of
geographic modeling and are employed for geographic analysis (L0, 2011; Wen et al., 2016;
Yue et al., 2016). A geo-analysis model is an abstraction of the evolution of geospatial
entities and their relationships (Belete et al., 2017a). The use of geo-analysis models enables
the simulation and reproduction of geographic processes to make decisions and explore
geographic rules. When considering complex geographic problems, typically, geo-analysis
models must be integrated to solve complex geographic problems due to the limited capacity
of a single model (Overeem et al., 2013; Jones et al., 2014; Guzman et al., 2015; Rajib et
al.,2016; Belete et al., 2017b; de Bakker et al., 2017; Buahin et al., 2018; Marcot et al., 2018;
Rossetto et al., 2018; Tian et al., 2018). After years of development, massive numbers of geo-
analysis models in multiple disciplines and domains have been produced all over the world
(Goodchild, 1996; Goodall et al., 2010; Jagers, 2010; Voinov et al., 2010; Granell et al.,
2013b; Laniak et al., 2013; Yue et al., 2016). With the large number of geo-analysis models
available, the development of methods for adequately integrating these models, building
synthetic geographic simulation systems, and solving complex geographic problems has
gradually become an important topic (Diaz L et al.,, 2008, Granell et al., 2013a). As
information technology (IT) has developed, progress has been made in terms of studying
integrated modeling frameworks. The development of these frameworks has passed through
approximately three stages. (1) In the hard-coding stage, hard coding is used to directly
integrate models. Although this method for model integration is direct and explicit, it lacks
flexibility, and the work undertaken for processing data (i.e., data preprocessing and data
conversion) is difficult to reuse due to the diversity of data requirements among geo-analysis
models (Granell et al., 2013b; Belete et al., 2017a). (2) In the component-based modeling and
simulation stage, the use of component-based strategies, in which independent components or
modules are designed, reduces the dependencies among components and frameworks.
However, these strategies are limited to specific modeling frameworks, and the components

are difficult to reuse in other frameworks. Additionally, these components cannot be used
directly on networks (Argent et al., 2004, 2006; Jagers, 2010; Granell et al., 2013Db). (3) In the
web-service-based modeling and simulation stage, web-service technologies are used to
publish geo-analysis models and related data as services (Hull et al., 2006; Wen et al., 2006;
Granell et al., 2010, 2013a; Zhao et al., 2012; Yin et al., 2015; Jones et al., 2016; Belete et al.,
2017a). Therefore, these resources can be reused to support the collaborative solving of
complex geographic problems. Regarding this aspect, the Open Geospatial Consortium
(OGC) has proposed several service description specifications such as the Web Map Service
(WMS), Web Feature Service (WFS), Web Coverage Service (WCS) and Web Processing
Service (WPS) implementation standards (Botts et al., 2008; Reichardt et al., 2010; Granell et
al., 2014). These service specifications are widely used in the field of geographic modeling
and model-related data (i.e., the raw data related to models, including input data, output data
and control parameters) sharing in the open web environment; sample applications include
the 52° North project (http://52north.org/) and Quantum GIS (QGIS) (QGIS Development
Team, 2012). Moreover, the Simple Object Access Protocol (SOAP), the Web Services
Description Language (WSDL) and cloud computing are widely used in the sharing and
integration of geo-analysis models (Geller & Turner, 2007; Goodall et al., 2011, 2013; Yang
etal., 2011; Wen et al., 2013, 2017; David et al., 2014; Belete et al., 2017a, 2017b; Jin et al.,
2017).

Considering the development of integrated modeling frameworks, the concepts of
sharing and reusability, which are based on web-service technologies, are widely used for
sharing model and data resources. However, using existing data resources to drive models
that run in the open web environment remains difficult challenging. On the one hand,
preparing data for use with models is difficult due to the heterogeneity and diversity of the
input and output data related to geo-analysis models. Although massive data resources exist
on the web, many of those data still cannot be used directly. On the other hand, traditional
data processing tools typically exist as independent software modules or algorithms that run
on desktop computers, and many of them cannot be directly used through the web. Examples
include the data processing tools in the ArcGIS Toolbox (a component in the ArcGIS
software, which is provided by the Environmental Systems Research Institute, ESRI) and the
data processing subprogram in the Community Surface Dynamics Modeling System
(CSDMS) (Peckham et al., 2013) model repository. Avoiding the issues that arise from the
heterogeneity and diversity of data resources and the reuse of data processing methods has
become a key topic in current model integration studies.

The Open Geographic Modeling and Simulation System (OpenGMS) team has
constructed the OpenGMS platform (http://geomodeling.njnu.edu.cn/) to enable the
development of solutions for complex geographic problems (Chen et al., 2009a, 2009b, 2011,
2015, 2017; Wen et al., 2013, 2017; Yue et al., 2015, 2016; Li et al., 2017). The OpenGMS
platform has drafted several standards and specifications (i.e., model-related metadata and
classification) for geo-analysis model descriptions and aims to make good use of geo-analysis
models, data resources and computing resources that are distributed over the web. This
platform represents an attempt to develop a series of methods and technological solutions to
enable collaborative modeling via geographic conceptual modeling, sharing geo-analysis
models, and integrating and simulating geographic processes in the open web environment.
Among the many research areas of interest in the platform, linking models and data resources
is a key issue in the implementation of the integration and simulation of geographic processes
on networks.

Within the OpenGMS research framework, this article presents the development of
data processing services with the aim of addressing the gap between models and data
resources. The study is based on the Universal Data eXchange (UDX) model, which was also

http://geomodeling.njnu.edu.cn/

designed by the OpenGMS team. Previous research has focused on the concept of the UDX
model and the expression (e.g., data content, semantic information, units and dimensions) of
model-related data with the UDX model (Yue et al., 2015, 2016). This article follows
previous research and studies resource (model and data resources) integration with the UDX
model in the open web environment, and methods for designing, generating, managing,
publishing, and invoking data processing services based on the UDX model are then designed
to form a series of shareable and reusable services for the mapping, refactoring, and
visualization of data. The data processing services proposed in this article will reduce the
difficulties encountered by model users when applying geo-analysis models.

The remainder of this article is structured as follows. The basic application scenario
and a conceptual classification of data processing services are explained in Section 2. In
Section 3, the methods used in implementing services, including those that map, refactor and
visualize data, are introduced. Section 4 presents the design of the data service container that
can be used to share and reuse data processing services. Section 5 examines the applicability
of the proposed data processing service by using two case studies. Finally, a discussion of the
study and the conclusions are presented in Section 6.

2 Basic application scenario and conceptual classification of data processing services

Due to the heterogeneity and diversity of geo-analysis models, the data associated
with these models are typically complex, and such data are diverse in terms of their forms
and contents. These features cause difficulties when integrating and applying models.
Implementing services for data processing when operating models on distributed networks
has been an inevitable tendency.

In this section, a case of model integration is introduced to illustrate data processing
services and how they work (Figure 1).

Figure 1 shows a model integration scenario of suitable area selection for planting
apple trees. The suitable area should meet the following four requirements. (1) The area
should be sunny. (2) The trees should be mainly distributed on both sides of a valley within
500 m. (3) The temperature should between 10 and 12 degrees centigrade. (4) Rainfall should
between 550 and 680 mm. As shown in Figure 1, four specific areas were selected according
to these four requirements (referred to four workflows with different colors in the figure).
Then, an overlay analysis (“Model E”) is conducted based on these four areas to generate a
comprehensive result. The raw input data in this case include raw DEM (digital elevation
model) data and data for the temperature and rainfall sampling points in the study area. The
raw DEM data provide the raw elevation information and are used to calculate the sunny
slope and extract the river network. The data for the temperature and rainfall sampling points
are used for the interpolation and extraction of eligible subsets. Finally, all the outputs from
previous calculations (“Model A-D”) are used to conduct the overlay analysis (“Model E”).
The output of the overlay analysis is the suitable areas that meet all the requirements for
planting apple trees. In this case, the raw DEM data were ASCII GRID (an ASCIlI-based
raster data format developed by ESRI), and the data structure of the temperature and rainfall
sampling points were customized by the model developers of “Model C” and “Model D.”
The “data processing” in this case involves data conversion between two models. For
example, the output of “Model A” was shapefile (a binary data format developed by ESRI),
while the input of “Model E” was GeoTIFF; thus, the “Shapefile to GeoTIFF” tool is used to
convert shapefile to GeoTIFF.

In this case, several models are involved. To select a suitable planting area, these
models should be linked together to form a model integration scenario, as shown in Figure 1.
Preparing data and running the model integration scenario are not easy for those who are not
familiar with these models. For example, some researchers may be unfamiliar with GIS and
the concepts of vectors, rasters, DEMs, etc., and may not understand ASCII GRID, GeoTIFF,

or shapefiles. Furthermore, the same data may be understood differently in the context of
different research fields. These issues limit the use of models, as well as their communication
and integration in multidisciplinary research. Therefore, reducing the costs of using cross-
domain models is a key point in interdisciplinary studies.

If model users want to use a model, they must first understand the input/output data of
the model. However, it may be difficult for users to understand unfamiliar data formats,
especially the customized data of the model. In this case, model users should invest
considerable effort to understand the data formats of the model. Additionally, these works
cannot be reused by others. Therefore, we proposed the UDX model to describe model-
related data in a flexible and understandable manner to help model users more clearly
understand the data requirements of models (Wen et al., 2013; Yue et al., 2015). With the
UDX model, model users can focus on data value of model-related raw data rather than the
complex organizational structure of the raw data. Theoretically, they can drive the model as
long as they provide related data, and their data processing-related work can also be made
available to others.

The UDX model provides a structured strategy to represent heterogeneous data and
includes a series of standard data operation interfaces to enable data expression. With the
UDX model, model providers can describe model-related data interfaces unambiguously, and
model users who are not familiar with these models can easily understand model-related data
(Yue et al., 2016; Zhu et al., 2017). The UDX model includes two components: UDX data
and UDX schema. The UDX data express the actual value of the data, whereas the UDX
schema contains a description of the data. Figure 2 shows how the UDX model describes the
raw data (i.e., ASCII GRID raw data). The left panel in Figure 2 (a) shows the ASCII GRID
raw data, which include elevation information and related metadata. These contents of the
raw data can be organized into a structured expression by the UDX model, as shown in the
right panel. The elevation information and metadata are expressed as data nodes with strict
data type requirements. In Figure 2 (b), the upper left panel shows the UDX data of the
ASCII GRID data (i.e., the UDX data), whereas the other panel shows a description of the
raw data (i.e., the UDX schema). Obviously, the UDX data of the ASCII GRID are more user
friendly: the model user does not have to understand the raw data format as long as he/she
understands the corresponding UDX data. Then, the model user can prepare the data for the
model according to the UDX schema that describes the model data.

UDX data can clearly express the model-related data to model users, but if these data
are expressed by the UDX model, such as the data in Figure 1, certain problems still need to
be solved.

First, the model should understand and run with the UDX data. Therefore, a data
mapping method must be designed to transform UDX data into raw data. A data mapping
method will provide a channel for data exchange between the UDX data and raw data. As
shown in Figure 1, “Model B” requires raw ASCII GRID data as input, but the given data
may be UDX data prepared by model users. The related data mapping method should be
invoked to transform the UDX data to ASCII GRID raw data before running the model.

Second, the UDX data prepared by model users may not always match the model
input requirements. For example, “Model A” requires GeoTIFF UDX data as input, but the
provided UDX data are ASCII GRID. Thus, a data refactoring method must be designed to
convert the data expressed by different UDX structures, such as ASCII GRID UDX data and
GeoTIFF UDX data. Namely, data refactoring will provide methods for converting one type
of UDX data into another.

Third, data visualization will contribute to data preparation and result validation.
Therefore, a data visualization method must be designed to examine the reasonableness of the

data from a visual perspective. For example, the reasonableness of the extracted river
network (in “Model A”) can be assessed in a visual way.

In summary, data processing methods (i.e., the mapping method, refactoring method
and visualization method) based on the UDX model can reduce the cost of using models.
Although developing these data processing methods is tedious and complex, once these data
processing methods can be published as services, they can be reused to avoid repetitive work
during complex data preparation tasks, especially for those who are not familiar with
complicated data.

To publish these data processing methods as services, there is still a need to design a
data service container to publish and manage the services in the open web environment so
that the model user can then invoke the processing service to prepare the data rather than
manually preparing the data after understanding the raw data related to the model.

Figure 3 explains the functionality and classification of data processing services based
on the UDX model, the corresponding implementation strategies, the sharing of services, and
application scenarios.

Based on these data processing services, an application scenario of using models can
be described as follows. Model providers encapsulate the data interfaces of their models by
using standard encapsulation interfaces and publish the encapsulated models as model
services in the open web environment (Yue et al., 2016). The data processing methods are
developed by the person who best understands the model-related data. Then, these methods
can be published as services and invoked to process data to run a model.

3 Implementing service methods

3.1 Data mapping method

Before executing a model, the model-related data requirements (the form in which the
data are expressed, organization of the contents of the data, semantic information and other
features) should be clearly understood by model users. Among these features, the data format
can be determined to determine the expression of the data. In practice, no universal data
format can be used to express all types of data because of the complexity and comprehensive
nature of geographic modeling. The data formats that are commonly used in the field of
geographic modeling are listed below.

(1) Custom data formats. The format of model-related data is typically determined by
the programming habits of the model developer. Examples include custom text files, binary
files and image files. In specific geo-analysis models, the custom data read-write interface
must be completely consistent with the organization of the custom data format. For example,
in the previous case, the data of the raw temperature or rainfall sampling points include X/Y
coordinates and the temperature or rainfall values at the position. The data content can be
organized into multiple formats, such as text files or binary files. The text files include .csv
(comma-separated values, CSV) files, in which the coordinates and the values can be
separated by commas, and .txt files, in which the separator can be any character (space,
semicolon, etc.) determined by the model developer. The binary files include custom binary
files and other common data formats, such as shapefiles. Although the same data contents can
be organized into different data formats, the data read-write interface is determined once the
data format is selected.

(2) Domain-specific data formats. With the development of geography, several widely
used data formats have been accumulated and have become domain-specific data formats.
Developers of geo-analysis models also employ mature open-source or commercial data
formats, including ASCII GRID files, shapefiles, GeoTIFF images, and NetCDF files (Rew
and Davis, 1990). Existing data read-write interfaces and APIs are typically used to
read/write data in domain-specific data formats. The Geospatial Data Abstraction
Library/OGR Simple Features Library (GDAL/OGR) (Fundation O. S. G., 2008) is among

the most commonly used data read-write libraries and supports several raster data formats
such as Arc/Info Binary Grid (.adf), Arc/Info ASCII Grid (.asc), NetCDF (.nc), GeoTIFF
(.tif) and Erdas Imagine (.img).

(3) Computer memory data formats. Generally, this type of data format exists as a
variable in computer memory when a program is running. Such data formats typically contain
the parameters for primary functions (generally the main function) and the parameter list for
API functions. These types of data formats are usually expressed by simple data types in the
programming language under use, such as int, float, double, or string.

In summary, multitudinous data formats are used in modeling, and model users have
difficulty studying all data formats to prepare data for running models. To reduce the costs of
preparing data prior to running a model, this article presents an extensible data mapping
method based on the UDX model. The implementation details of the data mapping method
are shown in Figure 4. The raw data related to the models can be organized into a single data
file or multiple data files. Regardless of whether the raw data are expressed in a custom data
format, a domain-specific data format or another format, several corresponding read-write
interfaces can be used to access them. As shown in the upper-right panel, several read-write
interfaces exist to access raw data, and these APIs can be implemented in multiple ways,
including Dynamic Link Libraries (DLLs), executable programs (EXE files), and Component
Object Model (COM) files; GDAL/OGR is an open-source library that provides read-write
interfaces for raster or vector data in the domain of spatial information. The standard Object
Linking and Embedding Database (OLE-DB) and Open Database Connectivity (ODBC)
libraries are commonly used to read/write raw data in databases. The data mapping method
exposes two interfaces to operate UDX data nodes: one reads the data content from the UDX
data (ReadFromNode), and the other writes the data content to the UDX data node
(WriteToNode). The two interfaces exchange information with the raw data by accessing the
raw data read/write interfaces, as shown in the lower-right panel in Figure 4.

Figure 5 shows the pseudocode for exchanging information between shapefile raw
data and the corresponding UDX data. Here, the GDAL/OGR library is used to read and
write raw shapefile data and the UDX model provides a series of interfaces for UDX node
operation. In Figure 5 (a), the interface “ReadFromNode” reads the data content from the
UDX data node and organizes this information as a shapefile by using the GDAL/OGR
library. In Figure 5 (b), the interface “WriteToNode” reads the data from the shapefile raw
data and writes them to the UDX data node. The case in Section 2 involves the mapping
methods for ASCII GRID, shapefile, GeoTIFF and customized data (e.g., the data for the
temperature and rainfall sampling points and the control parameters).

3.2 Data refactoring method

Data refactoring involves reprocessing data to fit the requirements of the target model,
the target model can be executed by using the refactored data. The refactoring method is
based on the UDX model and exchanges data between different UDX data formats. Data
refactoring can be classified into the following two categories.

(1) Functional refactoring. This refactoring method processes the values of UDX data
nodes; it does not change the structure of the UDX nodes. For example, when transforming
the coordinates in UDX data to another projection, only the data value of the UDX node
changes; the UDX node structure does not change. Spatial analysis algorithms that are
commonly used in the field of GIS, including raster data calculation and clipping algorithms,
are typically employed in the functional refactoring method. Open-source libraries are also
used in this type of data refactoring, including the Gmsh (Geuzaine and Remacle, 2009),
proj4 (Urbanek, 2008) and GDAL libraries, which perform mesh subdivision, projection
transformations, and raster data reading/writing, respectively.

(2) UDX node structure refactoring. Frequently, the same data content can be
organized into different UDX node structures; thus, the refactoring method is used to
reorganize one type of UDX node structure into the target structure. Figure 6 shows the
refactoring of a UDX node structure from ASCII GRID UDX data to GeoTIFF UDX data.
The ASCII GRID UDX data include a header node and a body node. The header node
includes the NCOL node, which expresses the width of the grid; the NROW node, which
expresses the height of the grid; the Xllcorner and Yllcorner nodes, which express the upper
left position of the grid; and so on. The body node is a collection node that collects the rows
of the grid; each row is an array of elevations. The GeoTIFF UDX structure also includes a
header node and a body node. The NCOL, NROW, XlICorner, YlICorner, CellSize, and body
nodes of ASCII GRID data correspond to the Width, Height, Upper left corner X, Upper left
corner Y, Pixel Width (Pixel Height), and Value nodes of GeoTIFF data, respectively.

In summary, data refactoring includes the following operations: build a UDX node
structure, read/write the UDX node value and perform numerical calculations. To efficiently
implement the specific requirements, third-party libraries such as Gmsh, proj4 and GDAL
can be used in the refactoring method. In short, the means of implementing the refactoring
method are very flexible, and any desired UDX data structure can be built by using UDX
node operation interfaces. The case in Section 2 involves two types of refactoring methods:
one is an ASCII GRID refactor to GeoTIFF, and the other is a shapefile refactor to GeoTIFF
(i.e., converting the vector data to raster data). These two refactoring methods are used to
dynamically exchange data during the integrated scenario.

3.3 Data visualization method

When a geo-analysis model completes its execution, the model output is displayed to
permit a visual assessment of the correctness of its execution. As web-based technologies
have been developed, large numbers of mature data visualization engines have emerged.
Engines that are used to perform Earth and map visualizations include WorldWind (a free and
open-source API for virtual globes, https://worldwind.arc.nasa.gov/), Cesium (an open-source
JavaScript library for world-class 3D globes and maps, https://cesiumjs.org/), OpenLayers (a
high-performance, feature-packed library for all mapping needs, https://openlayers.org/), and
Three.js (an open-source, easy-to-use and lightweight 3D library, https://threejs.org/). D3.js
(a JavaScript library for manipulating documents based on data, https://d3js.org/), Highcharts
(a JavaScript charting framework that enables the easy production of interactive charts for
webpages, https://www.highcharts.com/), and Echarts (a powerful, interactive charting and
visualization library for browsers, http://echarts.baidu.com/) are used for chart visualization.
Other visualization engines that serve other purposes also exist. These visualization engines
provide many excellent functions or APIs that can display data in various ways; however,
enabling these engines to support a specific data expression or provide compatibility for all
types of data formats is difficult. To make a new data format compatible, the new data format
must be converted to a form that is supported by that engine. Moreover, sharing and reusing
these conversion methods is difficult because of differences among these visualization
engines.

Generally, development of a common data visualization engine that can represent all
types of data formats is difficult, and new data formats are continually emerging in the field
of geographic information science. The concept of a visual package is proposed in this article
to support compatible new data formats and flexibly display data with specific styles. When
new data formats appear, new visual packages will be developed, and specific visual styles
can be customized in those packages. The visual package is also based on the UDX model.

Figure 7 shows the details of a visual package. Within the package, third-party
visualization engines are employed as renderers (Cesium.js for Earth visualization,
OpenLayers for map visualization, Echarts for chart visualization, and so on); UDX data

processing, which includes reading the UDX data nodes, configuring the UDX nodes and
binding the visualization engine based on these renderers, is then performed. Three main
interfaces (getUdxSchema, getUdx, and getSchemalndex) are exposed outside the package.
The “getUdxSchema” interface enables acquisition of the UDX data structure. The “getUdx”
interface obtains the UDX data outside the package. If a visual package supports multiple
types of UDX data formats, then the “getSchemalndex” interface refers to the specific UDX
data format that will be resolved by the package. With this loosely coupled interface design,
the visual package can be migrated to any other service platform after the exposed interfaces
have been implemented.

When using visual packages, UDX data can be flexibly displayed and analyzed in
multiple styles and even display portions of the UDX data as long as the visual package
supports the extracted UDX data. This approach is very useful for displaying portions of
model output data when the output data are too numerous to be displayed in their entirety.

4 Design of a data service container for data processing services

To enable sharing and reuse of the proposed data processing methods over distributed
networks, a data service container has been designed. This container is mainly used to publish
services and provides interfaces to manage and invoke them.

Figure 8 shows the architecture of the data service container. The data service
container takes Node.js as its main development language due to its lightweight features and
efficiency. MongoDB is used to store massive model-related data because it shows excellent
performance when used to store and process large datasets. Massive data can be efficiently
queried and updated when using Node.js and MongoDB, and the performance of the data
service container is guaranteed when processing large datasets. The HTTP protocol is
employed as the communications protocol in the data service container. This protocol
supports service management, service publishing and invoking, and other functions.

Before data processing methods can be published as services, they should be bundled
into a package for upload to a data service container. Taking the mapping service as an
example, the mapping method can be developed by using any programming language (e.g.,
C/C++, C#, Java, Fortran, etc.) and can be any type of program (e.g., .EXE, .DLL, .LIB) as
long as the program complies with the invocation interfaces designed by the data service
container. Then, the program of the mapping method, the description document, the UDX
schema indicating the supported type of UDX data and other related resources are packaged
into a .zip file. This .zip file can be uploaded to the data service container and then published
as a mapping service in the open web environment.

The data service container is a host of data processing services and an avenue for
service invocation. This container maintains all the information of the service, such as the
service list (e.g., service detail information, author information, and publication date), the
invocation information (e.g., invoker information, invocation time and the status of
invocation), service invocation records (e.g., service invocation log information, invocation
exceptions, and input/output data), and the service status information (e.g., availability
status). In addition to managing the data processing services, the data service container can
manage users and related data resources. User management mainly applies to local and
remote users and includes management of user accounts and simple permissions. Data
management mainly refers to management of data that a user uploads to the data service
container to invoke the data processing service and the data that the data processing service
outputs after its execution.

Invocation of the data processing service is asynchronous. The Node.js application
starts a new thread for each new invocation of a service, and access to and invocation of other
services are therefore unaffected. A service-operation instance is generated by each
invocation and is used to trace the running status of the service (such as whether it has thrown

an exception or whether the output files have been generated). Once an invocation is finished,
an invocation record is generated to record the information of the invocation.

The data service container can be installed in different server nodes, and the nodes
can communicate with one another. Specifically, a container on a specific server node can
access and invoke data processing services published by other containers. Therefore,
everyone can access the data processing service published by others in the open web
environment.

5 Case studies

Two cases are presented in this section to examine the applicability of the proposed
data processing service (demos of the two cases can be accessed from
http://ogms.qgitee.io/opengms/). The first case, whose application scenario is introduced in the
second section, mainly shows how data processing services dynamically exchange data
during model integration. The second case focuses on application of the data processing
service for data preparation.

5.1 Data processing service in the model integration scenario

In this section, a scenario in which planting areas are selected for apple trees,
introduced in Section 2, demonstrates the applicability of the proposed data processing
service to the process of model integration. As shown in Figure 9 (a), the model integration
scenario was implemented on the model integration platform (developed by OpenGMS
team). In this scenario, all the data processing services and model services were linked
together for a specific computational task. Three refactoring services dynamically exchange
the data during model invocation; models A-D are the implementations of requirements 1-4
(noted in Section 2), and model E is for calculating the final result by overlaying the output
of models A-D. In Figure 9 (b), the intermediate output data and the final result data are
displayed by the visualization service. The center of the panel shows the final suitable areas
for planting apple trees, and the remaining four panels show the middle results that meet
requirements 1-4.

5.2 Data preparation by using data processing services

This case study examines the applicability of the proposed data processing service to
prepare the data for the Taihu Water Pollution Diffusion Model (TWPDM) (Zheng S., 2016).
The TWPDM focuses on the simulation of water pollution diffusion for China’s Taihu Lake.
The framework of the TWPDM is presented in Figure 10. The input of the model mainly
includes wind data, pollution data, data from the inlet rivers of Lake Taihu (i.e., inlet
position, river name, river ID, etc.), initial pollutant concentration data, and other model
control parameters. After calculation, the output of the model includes the pollutant
concentration in every specific moment, the water depth, and the average water velocity. The
input or output data are all customized data as determined by the model developer. In this
case, the typical input data (wind data, which are marked in red in Figure 10) are selected to
illustrate how the data processing service prepares the data for model invocation. Finally, a
data visualization service is invoked to display the scenario of pollution diffusion.

The TWPDM was encapsulated and published to the model server as a model service.
The mapping methods for the raw wind station data were published as a service in the data
service container. The wind station data requirements were described by the UDX model, as
shown in Figure 11 (a). The wind station data included the following information: the station
id, the station name, the id of the grid to which the station belonged, and the position of the
station. Users can easily understand the UDX description of these wind stations. To drive the
model, the model user needs only to prepare the wind station UDX data, as shown in Figure
11 (b); he/she does not need to understand the details of the raw wind station data. The
mapping service can convert the wind station UDX data to raw data to correctly drive the
model. However, the raw wind station data can be organized into various data formats

http://ogms.gitee.io/opengms/

because of the specific data-collection environment, as shown in Figure 11 (c). Two types of
raw wind station data formats exist (i.e., .txt file and .csv file), both of which include the
required wind station data. Either of these data formats can generate UDX data to drive the
model as long as the corresponding mapping service has been published. Similarly, manually
generating the simple UDX data is effective for the simple raw data, such as by preparing
model control parameters.

The wind data included the wind velocity and direction at each wind station and the
time steps. The raw data organized this information into a .txt file. In Figure 12, “UDX
schema A” shows the UDX description of the raw data in which the wind data were
organized by their time steps, namely, data for all stations at the first moment, data at the
second moment, etc. However, the wind data required by the TWPDM were organized into
two .txt files: one stored the wind velocity and direction, and the other stored the time steps.
In Figure 12, “UDX schema B and “UDX schema C” show the UDX descriptions of the two
files. The wind data in “UDX schema B” were organized by the wind stations, namely, data
for all the time steps at the first wind station, data at the second station, etc. Although “UDX
schema A” provided all the required wind data for the model, the model required two UDX
subsets, which are expressed by “UDX schema B and “UDX schema C.” Therefore, “UDX
schema A” must be refactored as “UDX schema B” and “UDX schema C” by converting one
file to two. Meanwhile, the structure of the wind data is reorganized to meet the data
requirements of TWPDM.

The other data preparation method was similar to that for the wind station data and
wind data. Figure 13 shows the interface of TWPDM invocation. First, the related data
processing services and the TWPDM model service were selected from the left panel to build
the model integration scenario. Then, these services were linked to build a workflow from
data preparation to model invocation. After the model is finished, the visualization service
can be invoked to simulate the scenario of pollutant concentrations in Taihu Lake. Following
the above steps, the published data processing services can be shared and reused for other
TWPDM model users.

6 Conclusions and future work

The purpose of this study is to provide a method for linking geo-analysis models and
their related data resources. With the proposed data processing service, the data resources can
be processed to drive models in the open web environment. The processing service is the
medium for model integration, not only providing a simple means of access to geo-analysis
models but also reducing the repetitive work of data preparation through using these services.
Finally, the study of data processing services provides new concepts in the study of integrated
modeling frameworks.

As the study of geo-modeling and the integration of geo-analysis models continues,
certain avenues should be explored further.

(1) Transmission of UDX data in networks. In general, geo-analysis model-related
data are “big data” and are difficult to transmit over networks. Therefore, appropriate
progressive transmission strategies must be explored, including data compression, data
transmission in multiple batches and new transmission strategies in the IT domain.

(2) Automated tools for generating data processing methods easily. Currently, data
processing methods are always generated by coding. As the data related to models are
generally complex, coding for processing these data is tedious and fallible. Therefore, easy-
to-use and more highly automated tools are needed to improve the efficiency of generating
data processing methods. Additionally, more people would partake in this work if user-
friendly tools were available.

(3) Control of user permissions for accessing data. Generally, certain geo-analysis
models and their related data are sensitive, or in other cases, the model provider wants to

maintain control over his/her model. Therefore, strategies for managing user permissions and

security controls should be designed to guarantee the security of the resources in the open

web environment.

Acknowledgments, Samples, and Data
We appreciate the detailed suggestions and comments from the secretariat and the

anonymous reviewers. We express heartfelt thanks to the other members of the OpenGMS

team. This work was supported by the NSF for Excellent Young Scholars of China under

Grant number 41622108, the National Basic Research Program of China (973 Program)

under Grant number 2015CB954103, and Priority Academic Program Development of

Jiangsu Higher Education Institutions under Grant 164320H116. The samples and data

related to this article can be found in: http://ogms.gitee.io/opengms/.

References

52° North Initiative for Geospatial Open Source Software GmbH, Mdinster, Germany.
http://52north.org/ (accessed 01.05.18).

Argent, R. M. (2004), An overview of model integration for environmental applications—
components, frameworks and semantics. Environmental Modelling & Software, 19(3),
219-234.

Argent, R. M., Voinov, A., Maxwell, T., et al. (2006), Comparing modelling frameworks—a
workshop approach. Environmental Modelling & Software, 21(7), 895-910.

Belete, G. F., Voinov, A., Laniak, G. F. (2017a), An overview of the model integration
process: From pre-integration assessment to testing. Environmental Modelling &
Software, 87, 49-63.

Belete, G. F., Voinov, A., Morales, J. (2017b), Designing the Distributed Model Integration
Framework—-DMIF. Environmental Modelling & Software, 94, 112-126.

Botts, M., Percivall, G., Reed, C., et al. (2008), OGC? sensor web enablement: Overview and
high level architecture. GeoSensor networks, 175-190.

Buahin, C. A., Horsburgh, J. S., (2018), Advancing the Open Modeling Interface (OpenMI)
for integrated water resources modeling. Environmental Modelling & Software, 108,
133-153.

Chen, M., Lin, H., Liu, D., et al. (2015), An object-oriented data model built for blind
navigation in outdoor space. Applied Geography, 60, 84-94.

Chen, M., Lin, H., Li, G. (2017), Virtual Geographic Environments. The International
Encyclopedia of Geography, 1-11.

Chen, M., Sheng, Y., Wen, Y., Su, H. (2009a), Geographic Problem-Solving Oriented Data
Representation Model. Journal of Geo-Information Science, 11, 333-337.

Chen, M., Sheng, Y., Wen, Y., Tao, H., Guo, F. (2009b), Semantics guided geographic
conceptual modeling environment based on icons. Geographical Research, 28, 705-
715.

Chen, M., Tao, H., Lin, H., et al. (2011), A visualization method for geographic conceptual
modelling. Annals of GIS, 17, 15-29.

David, O., Lloyd, W., Rojas, K., et al. (2014), Model-as-a-service (MaaS) using the cloud
services innovation platform (CSIP).

Diaz L., Granell C., Gould M. (2008), Case Study: Geospatial Processing Services for Web
based Hydrological Applications.

De Bakker, M. P., De Jong, K., Schmitz, O, et al. (2017), Design and demonstration of a data
model to integrate agent-based and field-based modelling. Environmental Modelling
& Software, 89, 172-189.

Demeritt, D., & Wainwright, J. (2005), Models, modelling and geography. In: N. Castree, A.
Rodgers and D. Sherman, eds. Questioning geography. Oxford: Blackwell, 206-225.

http://ogms.gitee.io/opengms/

Fundation O. S. G. (2008), GDAL-OGR: Geospatial Data Abstraction Library/Simple
Features Library Software.

Geller, G. N., Turner, W. (2007), The model web: a concept for ecological forecasting.
Geoscience and Remote Sensing Symposium, IGARSS, 2469-2472.

Geuzaine, C., Remacle, J. F. (2009), Gmsh: A 3- D finite element mesh generator with
built- in pre- and post- processing facilities. International journal for numerical
methods in engineering, 79, 1309-1331.

Goodall, J. L., Castronova, A. M., Elag, M., et al. (2010), An integrated modeling
environment within the CUAHSI Hydrologic Information System. AGU Fall Meeting
Abstracts.

Goodall, J. L., Castronova, A. M., Huynh, N. N., et al. (2013), Using a Service-Oriented
Approach to Simulate Integrated Urban Infrastructure Systems. Journal of Computing
in Civil Engineering, 29(5), 04014061.

Goodall, J. L., Robinson, B. F., Castronova A. M. (2011), Modeling water resource systems
using a service-oriented computing paradigm. Environmental Modelling & Software,
26(5), 573-582.

Goodchild, M. F. (1996), GIS and environmental modeling: progress and research issues.
John Wiley & Sons.

Granell C., Diaz L, Schade S, et al., (2013a), Enhancing integrated environmental modelling
by designing resource-oriented interfaces. Environmental Modelling & Software, 39,
229-246.

Granell, C., Diaz, L., Gould, M., (2010), Service-oriented applications for environmental
models: Reusable geospatial services. Environmental Modelling & Software, 25, 182-
198.

Granell, C., Diaz, L., Tamayo, A., et al. (2014), Assessment of OGC web processing services
for REST principles. International Journal of Data Mining, Modelling and
Management, 6, 391-412.

Granell, C., Schade, S., Ostl?nder, N. (2013b), Seeing the forest through the trees: a review of
integrated environmental modelling tools. Computers, Environment and Urban
Systems, 41, 136-150.

Guzman, J. A., Moriasi, D. N., Gowda, P. H., et al. (2015), A model integration framework
for linking SWAT and MODFLOW. Environmental Modelling & Software, 73, 103-
116.

Hull, D., Wolstencroft, K., Stevens, R., et al. (2006), Taverna: a tool for building and running
workflows of services. Nucleic acids research, 34 (suppl_2), W729-W732.

Jagers, H. R. A. (2010). Linking data, models and tools: an overview.

Jin, X., Robinson, K., Lee, A, et al. (2017), A prototype cloud-based reproducible data
analysis and visualization platform for outputs of agent-based models. Environmental
Modelling & Software, 96, 172-180.

Laniak, G. F., Olchin, G., Goodall, J., et al. (2013), Integrated environmental modeling: a
vision and roadmap for the future. Environmental Modelling & Software, 39, 3-23.

Jones, A. S., Horsburgh, J. S., Jackson, S. D., et al. (2016), A web-based, interactive
visualization tool for social environmental survey data. Environmental Modelling &
Software, 84, 412-426.

Jones, N., Nelson, J., Swain, N., et al. (2014), Tethys: a software framework for web-based
modeling and decision support applications.

Li, G. N. (2011), Geographic analysis-oriented virtual geographic environment: framework,
structure and functions. Science China (D), 54(5):733-743

La, G., Chen, M., Yuan, L., et al. (2017), Geographic scenario: a possible foundation for
further development of virtual geographic environments. International Journal of
Digital Earth, 1-13.

Marcot, B. G., Penman, T. D., (2018), Advances in Bayesian network modelling: Integration
of modelling technologies. Environmental Modelling & Software.

Mohammad, A. R., Venkatesh, M., |, L. K., et al. (2016), SWATShare — A web platform for
collaborative research and education through online sharing, simulation and
visualization of SWAT models. Environmental Modelling & Software, 75, 498-512.

Overeem, 1., Berlin, M. M., Syvitski, J. P., (2013), Strategies for integrated modeling: The
community surface dynamics modeling system example. Environmental modelling &
software, 39, 314-321.

Peckham, S. D., Hutton, E. W. H., Norris, B. (2013), A component-based approach to
integrated modeling in the geosciences: The design of CSDMS. Computers &
Geosciences, 53, 3-12.

QGIS Development Team. (2012), “QGIS Geographic Information System.” Open Source
Geospatial Foundation Project.

Reichardt, M., (2010), Open standards-based geoprocessing Web services support the study
and management of hazard and risk. Geomatics, Natural Hazards and Risk, 1(2), 171-
184.

Rew, R., Davis, G. (1990), NetCDF: an interface for scientific data access. IEEE computer
graphics and applications, 10, 76-82.

Ritter, N., Ruth, M., Grissom, B. B., et al. (1995), GeoTIFF format specification GeoTIFF
revision 1.0, http://mac.mf3x3.com/GIS/GEOTIFF/geotiff_spec.pdf. (accessed
01.05.2018).

Rossetto, R., De Filippis, G., Borsi, 1., et al. (2018), Integrating free and open source tools
and distributed modelling codes in GIS environment for data-based groundwater
management. Environmental Modelling & Software, 107, 210-230.

Tian, Y., Zheng, Y., Han, F., et al. (2018), A comprehensive graphical modeling platform
designed for integrated hydrological simulation. Environmental Modelling &
Software, 108, 154-173.

Urbanek, S. (2008), proj4: A Simple Interface to the PROJ. 4 Cartographic Projections
Library (R package version 1.0-4).

Voinov, A., Cerco, C. (2010), Model integration and the role of data. Environmental
Modelling & Software, 25, 965-969.

Wen, Y., Chen, M., Li, G., et al. (2013), Prototyping an open environment for sharing
geographical analysis models on cloud computing platform. International Journal of
Digital Earth, 6, 356-382.

Wen, Y., Chen, M., Yue, S., et al. (2017), A model-service deployment strategy for
collaboratively sharing geo-analysis models in an open web environment.
International Journal of Digital Earth, 10, 405-425.

Wen, Y., LU, G., Yang, H., Cao, D., Chen, M. (2006), Service oriented distributed geological
model integrated framework. Journal of Remote Sensing, 2, 160-168.

Yang, C., Goodchild, M., Huang, Q., et al. (2011), Spatial cloud computing: how can the
geospatial sciences use and help shape cloud computing?. International Journal of
Digital Earth, 4(4), 305-329.

Yin, L., Zhu, J., Zhang, X., et al. (2015), Visual analysis and simulation of dam-break flood
spatiotemporal process in a network environment. Environmental Earth Sciences,
74(10), 7133-7146.

Yue, P., Guo, X., Zhang, M., et al. (2016), Linked Data and SDI: The case on Web
geoprocessing workflows. ISPRS Journal of Photogrammetry and Remote Sensing,
114, 245-257.

Yue, S., Chen, M., Wen, Y., et al. (2016), Service-oriented model-encapsulation strategy for
sharing and integrating heterogeneous geo-analysis models in an open web
environment. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 258-273.

Yue, S., Wen, Y., Chen, M., et al. (2015), A data description model for reusing, sharing and
integrating geo-analysis models. Environmental Earth Sciences, 74, 7081-7099.

Zhao, P., Foerster, T., Yue, P., (2012), The geoprocessing web. Computers & Geosciences,
47, 3-12.

Zheng, S. (2016), Research on Water Quality Assimilation Simulation of Taihu Based on
Particle Filter. Nanjing Normal University.

Zhu, Y., Zhu, A., Feng, M., et al. (2017), A similarity-based automatic data recommendation
approach for geographic models. International Journal of Geographical Information
Science, 31, 1403-1424.

Raw data of

Raw data of
temperature
ampling point

Raw ASCII
GRID data

Model A Model B Model C Model D Model E
Hydrological Sunny slope Temperature Rainfall Overl
Models and buffered Y . P interpolation and interpolation and veriay
. extraction . . analysis
analysis subset extraction subset extraction
ASCII €0
GRID b
€0
. ASCII GRID Shapefile to ASCII GRID .
Data processing to GeoTIFF GeoTIFF to GeoTIFF ——— Workflow to meet requirement (1)
tools Workflow to meet requirement (2)

——— Workflow to meet requirement (3)

Workflow to meet requirement (4)

Raw ASCII
GRID data

Figure 1. Process of area selection for planting apple trees.

[Models or data processing tools

Q Model related data

ASCII GRID raw data]

Structured expression for ASCII GRID]

|»

;360'.15 A0 - T T T T T T T T 1
|jnrows 97

Ixllcorner 59%5558.500000
:yllcorner 4114416.250000
jcellsize 25.000000
INGDATA value 3993 _ __ __
:TD't}_. T93TI3E.739 I73 7702 158 48 132302 TdFT96%Z 139, EGE':
Ill4.259 132.487 155.231 168.689 168.343 17F.746 187.558)
1111.529 121.002 127.528 129.544 147.785 16p.346 184.667|
1102.484 113.116 110.174 101.567 131.735 16p.509 158.545:
1105.118 110.067 110.075 110.357 128.823 15p.42 180.85 1)
1106.318 108.717 109.8 111.474 124.067 134.p38 142.691 1T

W N

J ooy 0

Name = AsciiGridNode
KernelType = DTKStructure

Name = head

KernelType = DTKStructure

1102.464 106.314 103.825 102.984 112.351 116.38 107.129
1101.76S 104.315 104.281 101.515 106.396 110.59 104.886
1104.932 105.574 105.007 104.581 106.33% 108.103 111.512!
1103.482 104.774 104.462 102.778 104.523 105.529 104.103F—
1102.351 106.912 103.037 100.241 103.998 103.931 100.334)
1116.395 114.25 107.702 104.172 103.653 102.608 102.175 |
:150.328 127.404 111.075 105.194 104.217 102.883 101.663:
1187.002 137.255 107.875 100.438 103.486 102.335 100.127
1164.933 131.797 110.394 103.8 104 102.707 101.145 100 1!
22 M25.573 118.218 109.488 105.275 104.042 102.84 100 100
1105.5 110.224 105.234 101.168 102.681 101.581 100 100 1;
1104.502 109.523 105.635 101.501 104.094 100 100 100 100!
1109.998 110.924 109.177 107.508 103.402 103.041 102.242:
1108.772 113.473 108.847 104.49 106.702 103.799 101.796 |

SO A I e o T T T T i
Iy b W N O W o

L O W

Name = ncols

[| KernelType = DTKIntValue

KernelType = DTKRealList

T > L_| Name = nrows
: KernelType = DTKTIntValue
e - - - - - -—-—--——- 1
|_ e 1
1 | | Name = body :
: KernelType = DTKList |
1
! 1
i 1
> L Name = Nodelndex :
1
1

(2)

[ASCII GRID UDX data }

<Dataset>
S M<XDO hEne="Head" " KerhElT R
<XDC name="cols" ke
<XDO name="rows" kern
<XDO name="xcorner" kernelType="real" valu

(SIS

Sl vt S i 1
pe="int" value="100" />
/pe="int" value="97" />

="595598.500000" />:‘

o 0 b W

<XDO name="ycorner" kernelType="real" value="4114416.250000" /3
<¥XDO name="cellsize" kern vpe="real" wvalue="25.000000" /> |

<¥XDO name="nodata" kernelType="int" walue="9999" /> |
</XDO>

<¥XDO name="body" kernel
<XDC name="band" ke
<XDC name="band" kern

ype="list">

B oW m
T

m =

r
m

/pe="real array" value="104.793,136.739,179.702,
vpe="real array" value="114.259,132.487,155.231,

[ASCII GRID UDX schema

<XDO name="band"
<XDO name="band"
<XDO name="band"
<XDC name="band"
<XDC name="band"
<XDO name="band"

M

16

oo b W R

[

1

1<UdxNode name="head" type="DTKT ANY" desc:;pt?
I <UdxNode name="ncols" t;te=7DTRT_INT" desc
<UdxNode name="nrows" type="DTKT_INT" description
<UdxNode name="xllcorner" type="DTKT_REAL" descr
<UdxNode name="yllcorner" type="DTKT REAL" descripti

<UdxDeclaration name="Ascii_Grid" description="Ascifi Grid">
<UdxNode>

<UdxNede name="cellsize" type="DTRKT REAL" descriptio
1 <UdxNode name="NODATA value" type="DTRT_REAL" description='

\ 4

pti

head of this data">
tion="columns count"/>
"rows count"/>
"X offset"/>
"y offset"/>

cell size"/>

'no data 1

S O W W

I<UdxNode name="body" type="DTKT_LIST" description="body of this data">

1o 0k W

O 0 W

NN

3! <UdxNeode name="NodeIndex" type="DTKT_REAL | DTRT_ LIST" description=

\/UdwNede> | _ _ _ _ _ _ _ _ _ _ _________________________

- </UdxNode>
= <SemanticAttachment>

<Concepts/>
<SpatialRefs/>
<Unics/>
<DataTemplates/>

- </SemanticAttachment>
-</UdxDeclaration>

(b)

Figure 2. UDX expression of the ASCII GRID raw data.

Universal data exchange mode (UDX)

@Description

= \ I\-[appingk‘: Input \Refacrori\ngé' _ Input Visualizatio!‘l ﬂf !
rat el e : é [J

Raw data UDX data Encapsulated UDX data Encapsulated Visualizationl
model A model B

@Implementation

Functionality and classification

Implement strategy

data

:_ ~ Datamapping : :- S [-)ajra-re-fa-ctr)r;né """\ Datavisualization :
: UDX vs. custom data : i | Functional refactoring : : Vector visualization :
il UDX vs. domain-specific data |, : UDX node structure I 1 | Raster visualization I
IIUDX vs. computer memory |! , | refactoring : : Chart visualization I
| | I
| I - I

@Servitization
Data service container

$§$ Publish Manage Invoke T‘?i’;\ /ﬂ‘iﬁ

Processing method Processing service Service management Use of processing service

@Application
Application scenario ¥ Dat ti -
= g etapreparation Publish data 9
1 Resources)y” === ===m==== ’
Model user esources” € Data I%Jider

Result on |5 3
S e esult expression |) S
Vlsgahzalt'o_n 2 Data processingd |z | Biferel oo
and analysis : <ervice é
Encapsulate & o Encapsulate

' 9
a _ E‘i‘ie_l__ Encapsulated * ncapsulate <__£n_0_d_el___ (7
Model provider Model Model integration Model Model provider

Figure 3. Workflow of data processing services.

-

Raw data formats]

Raw data read/write interfaces]

-

S GDAL/OGR n
e 100 = Access ()
—_— s |] [LEL E < | L oteos b
: = -~ ODBC o
. i DLL. EXE.
m veoone | L COM ...
~ applng L. S
UDX structure] U N
Raw data
Name-=... Mapping method] read/write
KernelType-=... i v
| Name=.. // UDX Data to raw data
KernelType=... ReadFromNode()
| Names=... 7| {
KernelType-=... }
Name-=... _~| Datanode J—
KernelType=... ™~ operation
// Raw data to UDX Data
| Names=... WriteToNode()
KernelType=... [~ {
Name-=... }
KernelType-=... J—

Figure 4. Implementation of the data mapping method.

Interface of “ReadFromNode”: UDX data to raw data

Name=Polygon
KernelType=DTKStructure

OGRPolygon* polygon1; // polygonl object

/

Name=Geometry

polygonl = new OGRPolygon();//generate polygonl object

KernelType=DTKStructure

Name=Surface
KernelType=DTKStructure

/

Name=ExteriorRing
KernelType=DTKStructure

OGRLinearRing* lineRing = new OGRLinearRing();
lineRing->addPoint(x,y);
polygonl.addRing(lineRing);//add outer rings

Name=LinearRing
KernelType=DTKStructure

L]

7

int count = 10; // set the count of inner rings

Name=InteriorRingCount
KernelType=DTKIntValue

Name=InteriorRings
KernelType=DTKList

Name=LinearRing
KernelType=DTKStructure

//get the inner rings of the polygonl
for(inti=0;i<count; i++)}{
OGRLinearRing* lineRing = new OGRLinearRing();
lineRing->addPoint(x,y);
polygonl.addRing(lineRing);//add outer rings

(a)

Interface of “WriteToNode”: raw data to UDX data

Name=Polygon

OGRPolygon* polygon1;// polygonl object

KernelType=DTKStructure

/

Name=Geometry

polygonl->getGeometryType();// get the geometry type of
polygonl

KernelType=DTKStructure

Name=Surface
KernelType=DTKStructure

|

OGRPoint p;
polygonl->Boundary()->Centroid(&p); //get the boundary of
polygonl

Name=ExteriorRing
KernelType=DTKStructure

L]

Name=LinearRing

OGRLinearRing* pLinearRing =
polygonl->getExteriorRing(); //get the outer ring of polygonl

KernelType=DTKStructure

Name=InteriorRingCount
KernelType=DTKIntValue

int count = polygonl->getNumberlinteriorRings();//get the
count of inner rings

Name=InteriorRings
KernelType=DTKList

]

Name=LinearRing

KernelType=DTKStructure

for(inti=0; i< count; i++){
polygonl->getinteriorRing(i); // get the inner rings of
polygonl

(b)

Figure 5. Pseudocode of the data mapping method for shapefiles.

[UDX expression of ASCIl GRID] UDX expression of GeoTIFF J

-_-—

Name=DEM Data Name=GeoTiff Data Name=Header
KernelType=DTKStructure KernelType=DTKStructure KernelType=DTKStructure
Name=Header Name=Header }:7 Name=Upper left corner X
| |KernelType=DTKStructure KernelType=DTKStructure _— KernelType=DTKReal
Name=NCOL Name=Bands P | |Name=Pixel width
KernelType=DTKInt KernelType=DTKList _— KernelType=DTKReal
Name=NROW L Name=Band | |Name=Transform param1
] KernelType=DTKInt _— KernelType=DTKStructure KernelType=DTKReal
= » 7 Name=nodata . f Name=Upper left cornet Y
- frames icomer e« " |KernelType=DTKReal— |)| |KernelType=DTKReal
| |KernelType=DTKReal {= ernelType=D1 | yp
i Name=Yllcorner : - - — 1] Name=offset | |Name=Transform param2
\ |KernelType=DTKReal 1“1 KernelType=DTKReal KernelType=DTKReal
rd
Name=CellSize Name=scale | |Name=Pixel height
" |KernelType=DTKReal | |KernelType=DTKReal KernelType=DTKReal
Name=Nodata Name=unit | |Name=Width
" |KernelType=DTKReal | |KernelType=DTKString KernelType=DTKReal
! N;rn_e:B;d_y __________ N L_(|Name=Value "\ [Name=Height
! = \) 1]
1 _ . I{KernelType=DTKList I'|KernelType=DTKReal
, [KernelType=DTKList :4 I — yp yp
I _ il 1 L Name=Row
! L pame-fow I ! KernelType=DTKRealList
\ KernelType=DTKRealList ! v Lmeme) bl E _______ b

E—

Figure 6. Refactoring of data nodes between the ASCIlI GRID and GeoTIFF formats.

Other service platforms

: o : |

Service platform A Service platform B Service platform C

ﬁ migration ﬁ migration ﬁ migration

Data interaction interfaces

getUdxSchema] | getUdx [getSchemalndex J
\ _~ \\ e

Data visualization package

P

Reading UDX node]—:{Configuring node data J —_— [Binding visual engine]

T N N

Third-party visual engines

A

Earth visualization Map visualization Chart visualization
Cesium.js Openlayers Echarts

WebGL Globe Leaflet.js HighChartjs

WebGL Earth BaiduMap D3.js

Figure 7. Implementation of the visual package.

T T T T T T T T s ,—____________________Dt_ _____ "'\
¢ i U ata
€---> g \ 5 Service ser B 1
management «. management management

[
[L !
I Service node D Service node C | | Management) Management of | Management of !
I \ ! of service ltems remote user user data |
1 A ﬁl\ L Management of Management of Management of |
I : ﬁ‘a | | ArEESiE i e mEes local user result data |
1 | Q 1 1 | Management of I
1 \ invocation records]
: v / \ v I N e = ”
] []
: g ST a 1 T
\ Service node A Service node B ,
S e o o ____ -~ Remote accessin Manage g ~\
{:}Ma ing service
Publi hI e ;
ublish, - . I
. «—> S —! {5} Refactoring service I
mongoDB Nodels Asynchronous invoking I\@Visualization service}l
___ -
Loy :
-
Mapping interface @ ’ - = - !
< S Mapping service Refactoring Visualization I
Refactoring interface | Data n_ instance 'n_ service instance ¢ service instance| I
< >| process Independent Independent Independent |
Visualization interface| ing process process process |
method| € > service |
/

Figure 8. Architecture of the data service container.

[) Cresteintegration scl. x ([Local Model Services % { [} Record
&

x (1) voxenRi

X \B Refactor services | dist: X

C | ® 106.14.78.235:6868/integration/solution/new

Create Solution

x @ 2 «©

Task Visualization

v v v

(a)

B v d : requirement2 | © ©

€ 5 |0 0sumsEEmm: ¢ O B @0 " ®

=

,I_ Final result "“‘ =

rOmoHd @

= o x
© wae|_Middle i ent1
€ ClowvswrmassEva. ¢« © B OB @
e
& Vo
<« C | @ 1051478238060 sualz.
=
[|
x

€ c ERC)
ot
 cator schoma |
wen %

(b)

Figure 9. Implementation of the model integration scenario.

. Initial pollutant
Wind station Pollution station Lake inlet river

E concentration i
Model i . . L . E
input 7 [Wind data J [Pollution data] [Lake’s flow] Grid information :
i [Model control parameters] i
Model
oce s Model calculation
calculation
i [Pollutant concentration] [Surface flow velocity] [Average velocity] i
I:f:;}?ji %E [Depth of water] [The underlying velocity] [...... J E
i [Spatial dispersion data] [Grid information] ;

Figure 10. Framework of the TWPDM.

1
2 <UdxNode>
3
4
5 <UdxNode
6 <UdxNode
i <UdxNode
8 <UdxNode
9 <UdxNode
10 <UdxNode
11 <UdxNode
120 </UdxNode>
HESA </UdxNode>
14 </UdxNode>
15 L</udxDeclaration>

<UdxDeclaration name="UdxDescription" description="">

<UdxNode name="WindSites" type="DTKT_ LIST" description="wind site information">
= <UdxNode name="site" type="DTKT ANY" description="information of each site">

name="site_ id" type="DTKT INT" description="site id"|/>

name="site name" type="DTKT STRING" description9|"site name'/>
name="grid id" type="DTKT INT" descriptions"the id of the grid'{/>
name="longitude" type="DTKT REAL" description#"the longitude of the site"l/)
name="latitude" type="DTKT REAL" description=|"the latitude of the site‘|/>

name="x" type="DTKT REAL" Eescription "x coordinate"|/>
name="y" type="DTKT REAL" description='y coordinate"|/>

()

] wind_site_udx. xml E]
il <dataset>
2 E <XDO name="WindSites" kernelType="list">
S -] <XDO name="sitel" type="DTKT ANY">
4 <UdxNode name="site id" type="DTKT_ INT" value="0"/>
5 <UdxNode name="site_name" type="DTKT_ STRING" value="14S T HR"/>
6 <UdxNode name="grid id" type="DTKT INT" value="937"/>
7 <UdxNode name="longitude" type="DTKT REAL" value="120.15817"/>
8 <UdxNode name="latitude" type="DTKT REAL" value="31.07851667"/>
S <UdxNode name="x" type="DTKT REAL" value="515087.4896277"/>
10 <UdxNode name="y" type="DTKT REAL" value="3438314.356071"/>
11 B </XDO>
12 © <XDO name="site2" type="DTKT_ANY">
13 <UdxNode name="site_ id" type="DTKT INT" value="1"/>
14 <UdxNode name="site name" type="DTKT STRING" value="_KyBH¥EO"/>
15 <UdxNode name="grid id" type="DTKT_ INT" value="1840"/>
16 <UdxNode name="longitude" type="DTKT REAL" value="119. 955%/>
167/ <UdxNode name="latitude" type="DTKT REAL" value="31.29116667"/>
18 <UdxNode name="x" type="DTKT REAL" value="495717.135466234"/>
19 <UdxNode name="y" type="DTKT REAL" value="3461872.11699922"/>
20 o </XDO>
21 H <XDO name="site3" type="DTKT ANY">
24 ®H <XDO name="sited4" type="DTKT ANY">
26 e
27 F </XDO>
28 L</dataset>
(b)
=] wind_site_raw_l. txt ﬁ]
1 # site ID. Site name. Grid ID. Lon. lat. X. Y #
2 0 14 S4THR 937 120.15817 31.07851667 515087.4896277 3438314.356071
1 RKim#EO 1840 119.955 31.29116667 495717.135466234 3461872.11699922
4 2 ZiME 2147 119.937 31.20516667 493998.552792254 3452341.62538285
S 3 & 1144 120.299617 31.232517 528533.677195651 3455409.80662082
B¢ Pl 436 e e s e &
7 5 #EMLFEE 1333 - - :
o = 1 |Site ID Sltinam_e Grid ID Lon Lat X Y
9 7 BT 1924 2 | 0 148574 937 120.15817 31.07851667 515087.4896 3438314.356
10 8 NEO 2667 3 | 1 i?ﬁ%ﬂ 1840 119.955 31.29116667 495717.1355 3461872117
B SHEE 216 4 | 2 illl“ﬁ 2147 119937 31.20516667 493998.5528 3452341625
1o 10 BEEL 2749 5 | 3)g% 1144 120.299617 31.232517 5285336772 3455409.807
1311 EIE 2674 6 4F8WL 436 120.108939 31.229036 510375.0404 345499044
14 12 = 1404 7 | 5 3L 1333 120.156983 31.393033 5149247387 3473171842
8 | 6 B8 WE 867 120.2294 31.3103 521828.7067 3464014.505
9 | 7TAEULA 1926 120.1735 31.12906667 516541.023 3443918.853
10| 8 /80 2663 120.122333 30.9815 511680.9078 3427558.091
11| 9 FEE 2160 120.0104833 31.0617 501000.1544 3436439.923
12| 10 Z#0 2742 120.4318333 31.15933333 541156.9018 3447340539
13 | 11 Fm#E 2676 120.3323333 30.97016667 531736.5082 3426343.023
14 | 12 F W 1406 120.2705 31.01246667 525820.2547 3431014.958
©

Figure 11. Preparation of the wind-site data.

5] wind_duta_ran_schena. xnl E3| |l wind date schena xelcd] [l wind data tine_schens zalcd | UDXschema A

1 [E<UdxDeclaration name="UdxDescription" description="">
2 o <UdxNode>
3 ———ﬂ<deNode name="time numbers" type="DTKT ANY" descr ion="number of times" />|
4 <UdxNode name="times data" type="DTKT LIST" description="time series data">
S B <UdxNode name="time data" type="D¥KT ANY" description="data at specific moment">
6 <UdxNode name="time" type="DTKT STRING" description="specific moment" />|
7 B <UdxNode name="wind data" type="DTKT LIST" description="sites collection">
8 H <UdxNode name="vel dir" type="DTKT ANY" description="data at each site">
9 <UdxNode name: ;ﬁind_yelocity" Eype="DTKT_REAL" description="wind velocity"/>
10 <UdxNode name="wind direction" type="DTKT REAL" description="wind direction"/
11 </UdxNode>
12 </UdxNode>
13 </UdxNode>
14 </UdxNode>
15 /UdxNode>
16 </UdkgDedlargtion>
< X refactoring |
[wind date v fschend snlid 5] wind_data_schena. xnl Eil B vind_dats_tine_schena. xnld3| UDX schema B
1 [H<Udxpeclaration name="UdxDescription" description="">
2 H UdxNodg>
3 B <UdxNode name="WindData" type="DTKT LIST" description="wind data">
4 [<UdxNode name="site" type="DTKT ANY" description="data at each site">
S H LUdxNode name="time data" type="DTKT LIST" description="time series data">
6 O : <UdxNode name="vel dir" type="DTKT ANY" description="data at specific moment">
7 <UdxNode name="wind velocity" type="DTKT REAL" description="wind velocity"/>
8 <UdxNode name="wind direction" type="DTKT REAL" description="wind direction"/
) </UdxNode> B B
</UdxNode>
1 </UdxNode>
12 </UdxNode>
3 /UdxNode>
14 </UdikDeglaration> EU:
[ind_dhta ran_schena xml\—‘l [wind date_schena xnltd [wind_date_time_schema. xml ml UDX schema C
L EJ<UdxDeclaration name="UdxDescription" description="">
24 % <UdxNode>
s I UdxNode name="time numbers" type="DTKT ANY" description="number of times" />
4 é <UdxNode name="times" type="DTKT LIST" description="the collection of times">
5 <UdxNode name="time" type="DTKT STRING" description="each moment "/>|
6 I </UdxNode>
7+ </UdxNode>
8 L</udxDeclaration>

Figure 12. Data refactoring when preparing the wind data.

) Data services | disribu: X { [} Local Model Servces X [} Solution brary BB/ 1) Create integration sol: X

C | ® 106.14.78.235:6868/integration/solution/edit?_id=5b081468b30f! 44f9a19

Task Visualization

pen

Add data service node

Host 106.14,78.235

Port 8899 Add

106.14.78.235:8899 N
106.14.78.235:8899 ~

Data Map List

ASCII GRID
J GeoTIFF
J Paint_Sets
@ Taihu_InWaterRiver
Taihu_Display_PLY
@ Taihu_Display_TRI
Data Refactor List
B ASCII_GRID_2_GeoTIFF
& Shp2TIFF
B Refacor4RawWindData
[#| RefWindData

>
T Sy - 0 X
B Com Sty %
adatctae index htmitingex=0adieramel =/ser/downiosd.. | @ @ @ @ © @ b € -+ & | D vpr061478235 B89 susszation/SU0meS 2 307c

| /8 B s i) B Cosm Stmterag %
€ 5+ C | D Mtp/I061478235 3890 susizaton/Sb0se5a 07 b e

Figure 13. Model invocation and result visualization.

View publication stats

https://www.researchgate.net/publication/328817630

